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(57) ABSTRACT

Atomically updating an in-memory data structure that is
directly accessible by a processor includes comparing old
information associated with an old version of the in-memory
data structure with current information associated with a cur-
rent version of the in-memory data structure; in the event that
the old information and the current information are the same,
replacing the old version with a new version of the in-memory
data structure; in the event that the old information and the
current information are not the same, determining a differ-
ence between the current version of the in-memory data struc-
ture and the new version of the in-memory data structure, and
determining whether the difference is logically consistent;
and in the event that the difference is logically consistent,
merging a change in the current version with the new version.

20 Claims, 9 Drawing Sheets
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1
MERGE-UPDATE FOR EFFICIENT ATOMIC
MEMORY MODIFICATION IN
CONCURRENT COMPUTER SYSTEMS

CROSS REFERENCE TO OTHER
APPLICATIONS

This application claims priority to U.S. Provisional Patent
Application No. 61/273,178 entitled MERGE-UPDATE
FOR EFFICIENT ATOMIC MEMORY MODIFICATION
IN CONCURRENT COMPUTER SYSTEMS filed Jul. 31,
2009 which is incorporated herein by reference for all pur-
poses.

BACKGROUND OF THE INVENTION

In concurrent computer systems, race conditions may
occur when multiple concurrent processes update the same or
related memory locations simultaneously. Race conditions
leave the memory state inconsistent relative to software
requirements. For example, if two processes add entries to a
software data structure such as a hash table simultaneously,
both mapping to the same hash bucket, the result may be a
corrupted linked list in that hash bucket.

One well-known approach to solve the race condition prob-
lem is to use locks. A process is required to acquire the lock
before moditying the data structure and release the lock after-
wards. An atomic test-and-set instruction is sometimes sup-
ported in hardware. Problems associated with locking include
deadlock, priority inversion, and extra overhead of queuing
on locks. Some conventional approaches such as non-block-
ing synchronization (NBS) and hardware transactional
memory (HTM) systems address certain problems associated
with locking, but other issues remain, including high memory
overhead and operational inefficiencies due to conflicting
access.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG. 1 is a block diagram illustrating an embodiment of a
system for a structured memory coprocessor.

FIGS. 2A-2B are data structure diagrams illustrating
examples of directed acyclic graph (DAG) structures.

FIG. 3 is a flowchart illustrating an embodiment of a
merge-update process.

FIGS. 4A-4B and 5A-5B are data structure diagrams illus-
trating an example process for atomically merging and updat-
ing an in-memory data structure that is directly accessible by
a processor.

FIG. 6 is a diagram illustrating an example of a nested
segment data structure.

FIG. 7 is a flowchart illustrating an embodiment of a pro-
cess for handling merge update of a nested DAG data struc-
ture.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composition
of matter; a computer program product embodied on a com-
puter readable storage medium; and/or a processor, such as a
processor configured to execute instructions stored on and/or
provided by a memory coupled to the processor. In this speci-
fication, these implementations, or any other form that the
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invention may take, may be referred to as techniques. In
general, the order of the steps of disclosed processes may be
altered within the scope of the invention. Unless stated oth-
erwise, a component such as a processor or a memory
described as being configured to perform a task may be imple-
mented as a general component that is temporarily configured
to perform the task at a given time or a specific component
that is manufactured to perform the task. As used herein, the
term ‘processor’ refers to one or more devices, circuits, and/or
processing cores configured to process data, such as computer
program instructions.

A detailed description of one or more embodiments of the
invention is provided below along with accompanying figures
that illustrate the principles of the invention. The invention is
described in connection with such embodiments, but the
invention is not limited to any embodiment. The scope of the
invention is limited only by the claims and the invention
encompasses numerous alternatives, modifications and
equivalents. Numerous specific details are set forth in the
following description in order to provide a thorough under-
standing of the invention. These details are provided for the
purpose of example and the invention may be practiced
according to the claims without some or all of these specific
details. For the purpose of clarity, technical material that is
known in the technical fields related to the invention has not
been described in detail so that the invention is not unneces-
sarily obscured.

An atomic merge-update operation in concurrent computer
systems is described. The operation allows concurrent
updates to be merged even when there is conflict from modi-
fications by different threads or processes, so long as the
conflict is logically consistent. In some embodiments, an
updating process or thread maintains a copy of the original
data structure at the beginning of an update operation or a
logical transaction and performs updates on the copy. On
completion of the updates, information (such as a pointer)
associated with the original data structure is compared with
information associated with the current version of the data
structure. If they point to the same structure, there are no
conflicting updates and a compare-and-swap (CAS) opera-
tion is performed to replace the original version with a new,
modified version of the data structure. If, however, the origi-
nal data structure is different from the current data structure,
updates of the current data structure can be merged into the
new, modified version as long as the differences are logically
consistent. Logically consistent differences are concurrent
modifications by different threads or processes that can be
resolved to arrive at a memory state that is predictable. When
logically consistent modifications made by multiple threads
to a memory structure are merged, it is as though each thread
or process has made its modifications to the memory structure
atomically and independently. As will be explained in greater
detail below, for different types of data, there are different
ways of determining whether modifications are logically con-
sistent. In some embodiments, logical consistency is deter-
mined using logical consistency constraints selected from
among a set of potential constraints. Once the differences are
merged, the CAS operation is retried.

Ifthe differences are not logically consistent, such as when
two current processes each attempting to add an entry to a
map with the same key, the merge-update operation fails and
some operations are retried.

Structured memory is used in some embodiments to sup-
port the merge-update operation. Structured memory is
immutable, copy-on-write memory. To reduce the cost of
multiple copies or versions of the same data, some implemen-
tations of structured memory implement automatic data
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deduplication and compaction. For example, in U.S. Pat. No.
7,650,460 entitled HIERARCHICAL IMMUTABLE CON-
TENT-ADDRESSABLE MEMORY PROCESSOR and co-
pending U.S. patent application Ser. No. 12/784,268 entitled
STRUCTURED MEMORY COPROCESSOR filed May 20,
2010, which are incorporated herein by reference for all pur-
poses, a Hierarchical Immutable Content Addressable
Memory Processor (HICAMP) architecture utilizing struc-
tured memory is disclosed. In the examples below, hardware
systems employing the HICAMP architecture are discussed
extensively for purposes of illustration. The techniques dis-
cussed are applicable to other processor and structured
memory architectures.

FIG. 1 is a block diagram illustrating an embodiment of a
system for a structured memory coprocessor. In the example
shown, processor 102 is coupled to link 104, which is itself
coupled to a memory 106 and coprocessor 108. Coprocessor
108 is also coupled to a structured memory 110. In some
embodiments (not shown), the structured memory 110 is a
subset of memory 106, and coupled to coprocessor 108
through the link 104. There may be a plurality of processors
and/or memories.

Processor 102 may be any processor with an established
instruction set architecture; for example the Intel Xeon™,
AMD Opteron™, or another processor with the Intel x86™
instruction set architecture. Link 104 may be any memory
bus, including a memory-coherent high-performance exter-
nal bus; for example, the AMD cHT bus and Intel QPI bus.
Memory 106 may be any form of storage of state, for example
non-volatile or volatile memory, dynamic or static memory,
or any memory of varying mutability, accessibility, perfor-
mance or capacity. Two examples of memory 106 include a
dynamic random-access memory (“DRAM”) used for per
processor or system-wide primary storage or a static random-
access memory (“SRAM”) for processor or system-wide
caching. Coprocessor 108 gives processor 102 access to
structured memory 110, for example HICAMP. In some
embodiments (not shown), the coprocessor implements
structured memory within memory 106 instead of having a
dedicated memory shown as 110 in FIG. 1.

In some embodiments, the coprocessor is implemented
effectively as a version of a HICAMP processor, but extended
with a network connection, where the line read and write
operations and “instructions” are generated from requests
over a Hyper Transport bus rather than local processor cores.
The combination of the Hyper Transport bus interface module
and region mapper simply produces line read and write
requests against an iterator register, which then interfaces to
the rest of the HICAMP memory system/controller 110. In
some embodiments, coprocessor 108 extracts VSIDs from
the (physical) memory address of the memory request sent by
the processor 102.

In some embodiments, the coprocessor includes a proces-
sor/microcontroller to implement, for example, notification,
merge-update, and configuration in firmware, thus not requir-
ing hard logic.

Each coprocessor context is assigned a separate page loca-
tion in the physical address space so it can be allocated and
mapped by the operating system (“OS”), thereby allowing the
process to write directly. Thus, an OS process is coupled to a
coprocessor context and can only perform instructions on the
regions/iterator registers within that context. In this way, pro-
tection between processes is preserved in the coprocessor.

Each of the iterative operations, for example indexed-join
or make-inverted-index, can be implemented as a firmware-
driven iteration using basic HICAMP operations. This is in
contrast to a dedicated HICAMP processor, where iterative
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operations are implemented by a loop instruction, looping
over the basic instructions to read and write through iterator
registers.

Notifications are generated by the iterator register compar-
ing lines against the previous segment, as required for merge-
update. If a line differs from the previous segment, for
example it is currently committed; a notification record is
queued for each processor that is interested. A merged line is
produced if the segment is flagged as merge-updatable and
the new and old lines can be merged.

In some embodiments of the HICAMP architecture, the
physical memory is organized as an array of small fixed-size
lines. Each line is addressed by a physical line identification
(PLID) and has a unique content that is immutable for the life
of'the line. The memory is accessed as a number of segments,
where each segment is structured as a directed acyclic graph
(“DAG”) of memory lines. A segment table maps each seg-
ment to the PLID that represents the root of the DAG. Seg-
ments are identified and accessed by segment identifiers
(“SegID”). Special-purpose registers in the processor (re-
ferred to as iterator registers) allow efficient access to data
stored in the segments, including loading data from the DAG,
iteration, prefetching, and updates of the segment contents.
Content-Unique Lines

In some embodiments, HICAMP memory is divided into
lines, each with a fixed size, for example 16, 32, or 64 bytes.
Each line has a unique content that is immutable during its life
time. Uniqueness (also referred to as deduplication) and
immutability of lines is guaranteed and maintained by a
duplicate suppression mechanism in the memory system. In
particular, the memory system can either read a line by its
PLID, similar to a read operation in a conventional memory
system, as well as look up by content, instead of writing. L.ook
up by content operation returns a PLID for the memory line,
allocating a line and assigning it a new PLID if such content
was not present before. When the processor needs to modify
a line, to effectively write new data into memory, it requests a
PLID for a line with the specified/modified content.

In some embodiments, PLIDs are a hardware-protected
data type to ensure that software cannot create them directly.
Each word in the memory line and processor registers has tags
which indicate whether it contains a PLID and software is
precluded from directly storing a PLID in a register or
memory line. In some embodiments, the tags for words in the
memory lines are stored in the ECC bits, using bits that are not
strictly needed for adequate ECC, for example commodity
DRAM chips with ECC contain 8 ECC bits per 64-bit of data
yet for 16-byte lines 9 ECC bits are sufficient to implement
standard  single-error-correcting-double  error-detecting
(“SEC-DED”) code, leaving 7 bits to store the tags.

Consequently, HICAMP provides protected references in
which an application thread can only access content that it has
created or for which the PLID has been explicitly passed to it.
Segments

A variable-sized, logically contiguous block of memory in
HICAMP is referred to as a “segment” and is represented as
a DAG constructed of fixed size lines as illustrated in FIG. 2A.
FIG. 2A shows two memory segments 202 and 204 represent-
ing two strings, the second one 204 being a substring of the
first 202. Note that the second string shares all the lines of the
first string, given the latter is a substring of the former. The
data elements are stored at the leaf nodes (also referred to as
leaf lines) 206 of the DAG.

Each segment follows a canonical representation in which
leaf lines are filled from the left to right. As a consequence of
this rule and the duplicate suppression by the memory system,
each possible segment content has a unique representation in



US 9,047,334 B1

5

memory. In particular, if the character string of FIG. 2A is
instantiated again by software, the result is a reference to the
same DAG which already exists. In this way, the content-
uniqueness property is extended to memory segments. Fur-
thermore, two memory segments in HICAMP can be com-
pared for equality in a simple single-instruction comparison
of the PLIDs of their root lines, independent of their size.

When contents of a segment are modified by creating a new
leafline, the PLID ofthe new leaf replaces the old PLID in the
parent line. This effectively creates new content for the parent
line, consequently acquiring a new PLID for the parent and
replacing it in the level above. Continuing this operation, new
PLIDs replace the old ones all the way up the DAG until a new
PLID for the root is acquired.

Each segment in HICAMP is “copy-on-write” because of
the immutability of the allocated lines; that is, a line does not
change its content after being allocated and initialized until it
is freed because of the absence of references to it. Conse-
quently, passing the root PLID for a segment to another thread
effectively passes this thread a snapshot and a logical copy of
the segment contents. Exploiting this property, concurrent
threads can efficiently execute with “snapshot isolation”;
each thread simply needs to save the root PLID of all seg-
ments of interest and then reference the segments using the
corresponding PLIDs. Therefore, each thread has sequential
process semantics in spite of concurrent execution of other
threads.

A thread in HICAMP (either in a stand alone HICAMP
processor or a HICAMP co-processor) uses non-blocking
synchronization to perform safe, atomic merge-update of a
segment by:

1. saving the root PLID for the original segment;

2. modifying the segment updating the contents and pro-

ducing a new root PLID; and

3. using a merge compare-and-swap (“MCAS”) instruction

or similar to atomically replace the original root PLID
with the new root PLID if the root PLID for the segment
has not been changed by another thread, or if it has,
optionally merge modifications that are logically con-
sistent.

Because of the line-level duplicate suppression, HICAMP
maximizes the sharing between the original copy of the seg-
ment and the new one, making copying inexpensive and
MCAS practical. For example, if the second string in FIG. 2A
was modified to add the extra characters “append to string”,
the memory as shown in FIG. 2B then contains the segment
212 corresponding to the second string, sharing all the lines of
the original segment, and simply extends with additional lines
to store the additional content and the extra internal lines
necessary to form the DAG.

Segment Map

A HICAMP segment is referenced in software using a
SeglD, which is mapped to the corresponding PLID, through
a segment map. In some embodiments, this map is imple-
mented in the conventional part of the memory, indexed by
SeglID with each entry containing:

[rootPLID,height,flags]
and fitting into a single memory line. The rootPLID indicates
the physical line ID for the root node of the segment DAG and
the height indicates the height or logical height. Flags are
used to indicate read-only access, merge-update or to indicate
a weak reference, for example, ones that should be zeroed
when the segment is reclaimed, rather than prevent its recla-
mation. Each word in the line is further tagged as being a
SeglD or PLID.

Objects at the software level are mapped into distinct seg-
ments, where the object data is stored in the leaves of the DAG
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representing the segment. Other objects referring to this
object, for example O1, store its corresponding SeglD, S1.
When the contents of O1 are updated, the entry in the segment
map corresponding to S1 is updated to point to the new
rootPLID of its DAG, and thus the other referencing objects
do not have to change their references.

This mapping acts as a fine-grain page table and virtual
memory mechanism in a conventional architecture. However,
the “address translation” only occurs on the first access to the
segment, not on every access to each data element. In this
vein, there is no need for conventional address translation in
HICAMP because inter-process isolation is achieved by the
protected references. In particular, a process can only access
data that it creates or it is passed a reference to. Moreover, a
reference such as a SegID can be passed as read-only, restrict-
ing the process from updating the rootPLID in the corre-
sponding segment map entry. Thus, a thread can efficiently
share objects with another threads by simply passing the
SeglID, while ensuring that the other threads cannot modify
the object, achieving the same protection as separate address
spaces but without the interprocess address copying, marshal-
ing and demarshaling, and duplication forced by conven-
tional virtual memory systems.

In HICAMP, memory accesses go through special registers
referred to as iterator registers. An iterator register effectively
points to a data element in a segment. It caches the path
through the segment from the root PLID of the DAG to the
element it is pointing to, as well as element itself; ideally the
whole leaf line. Thus, an ALU operation that specifies a
source operand as an iterator register accesses the value of the
current element the same way as a conventional register oper-
and. The iterator register also allows its current offset, or
index within the segment, to be read.

Iterator registers support a special increment operation that
moves the iterator register’s pointer to the next or next non-
null element in the segment. In HICAMP, a leaf line that
contains all zeroes is a special line and is always assigned
PLID of zero. Thus, an interior line that references this zero
line is also identified by PLID zero. Therefore, the hardware
can easily detect which portions of the DAG contain zero
elements and move the iterator register’s position to the next
non-zero memory line. Moreover, caching of the path to the
current position means that the register only loads new lines
on the path to the next element beyond those it already has
cached. In the case of the next location being contained in the
same line, no memory access is required to access the next
element.

Using the knowledge of the DAG structure, the iterator
registers can also automatically prefetch memory lines in
response to sequential accesses to elements of the segment.
Upon loading the iterator register, the register automatically
prefetches the lines down to and including the line containing
the data element at the specified offset.

FIG. 3 is a flowchart illustrating an embodiment of a
merge-update process. Merge-update operation 500 may be
performed on a system such as 100 of FIG. 1, by an executing
thread or process to merge any change made by another
thread or process to the same in-memory data structure.

In this example, the in-memory data structure is an immu-
table data structure such as the DAG structure described
above. Prior to the merge-update process, the executing
thread or process logically makes a copy (also referred to as a
new version) of the data structure being updated, by saving
the address of which in a new version pointer. Any modifica-
tion by the executing thread or process is made in the new
version. The original data structure is referred to as the old
version.
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At 502, old information associated with an old version of
the in-memory data structure is compared with current infor-
mation associated with a current version of the in-memory
data structure. In some embodiments, an old pointer pointing
to the old version of the DAG and a current pointer pointing to
a current version of the DAG are compared. In other embodi-
ments, other types of information, such as identifiers, refer-
ences, handles, may be used to carry out the comparison. In
these embodiments, the original DAG structure is unmodified
and its address is saved as the old pointer, and the current
pointer can point to the same DAG structure as the original or
a copy of a DAG structure if a different thread or process has
attempted to make modifications to the DAG structure con-
currently as the executing thread or process.

If it is determined that the old information and the current
information are the same, the new version of the in-memory
data structure is returned at 504. In this situation, no conflict-
ing modification has been made by another thread and a
normal CAS operation is performed by replacing the old
version with the new version.

If, however, the old information is different from the cur-
rent information, there is conflicting updates to the same
DAG by a different thread, and merge-update is required. At
506, differences between the current version (which is modi-
fied by the other thread) and the new version (which is modi-
fied by the executing thread) relative to the old version are
determined. In some embodiments, the determination is made
recursively on subtree pointers until equal pointers are
detected or the leaf nodes are reached.

At 508, it is determined whether the differences are logi-
cally consistent; in other words, whether the differences can
be resolved without leaving the memory in an unpredictable
state. Examples illustrating logically consistent differences
are described in detail below. If the differences are logically
consistent, the changes in the current version are merged with
the new version at 510. At 504, the new version is returned.
Upon receiving the returned new version, a CAS operation
takes place and the root pointer switches from pointing to the
current version to pointing to the new version.

I, however, the differences are not logically consistent and
the changes cannot be merged atomically, at 512, merge fail-
ure is handled. For example, a failure indicator is returned, the
operations by the executing thread or process are rolled back
all the way up to the application level, and the thread or
process may retry the same operations.

In some embodiments, the merge-update process
described above is applicable only to certain data structures.
Thus, prior to 502, the processor checks to determine whether
the merge-update operation may be executed on the data
structure. In some embodiments, eligible data structures are
marked with a flag, a tag, a marker, or any other appropriate
indicator to facilitate the determination. The indicator may be
stored in a register in hardware and checked by the processor
to determine whether the data structure is eligible for merge-
update.

In this example, the in-memory data structure that is
updated is directly accessible by a processor and steps
described are carried out in hardware.

FIGS. 4A-4B and 5A-5B are data structure diagrams illus-
trating an example process for atomically merging and updat-
ing an in-memory data structure that is directly accessible by
a processor. The diagrams show the in-memory data struc-
tures used during the merge-update operation, at times TO-T5.
The merge-update process of FIG. 3 is illustrated in connec-
tion with FIGS. 4A-4B and 5A-5B.

Attime TO, the original data structure 300 (i.e., old version)
is shown. For purposes of illustration, the data structure is
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shown as a simple DAG with a height of 3. Each PLID is
shown to have a left pointer and a right pointer, which may
point to other PLIDs or leaf lines. In the example shown, each
leafline is a fixed block of memory that stores a string. A root
pointer 302 points to the top level PLID 304, which in turn
points to PLIDs 306 and 308. The left and right pointers of
PLID 306 point to leaf lines “Sue” and “Fred”, respectively.
The left and right pointers of PLID 308 point to “Bob” and a
NULL leaf line, respectively. In this example, the strings are
zero-terminated to the right.

At time T1, thread A attempts to add a string “Bill” to the
data structure at offset 3. Initially, thread A makes a copy of
the root pointer’s data structure for making modifications. In
other words, thread A creates a local root pointer A that points
to the same PLID, 304, as root pointer 302. By using the
structured memory, the cost of a “copy” is the same as making
a pointer, which is inexpensive computationally. The proces-
sor looks up this entry at offset 3 in the DAG, starting from the
local root pointer, using techniques such as ones described in
U.S. Pat. No. 7,650,460 entitled HHERARCHICAL IMMU-
TABLE CONTENT-ADDRESSABLE MEMORY PRO-
CESSOR and co-pending U.S. patent application Ser. No.
12/784,268 entitled STRUCTURED MEMORY COPRO-
CESSOR filed May 20, 2010, which are incorporated herein
by reference for all purposes. In this example, the lookup
operation for “Bill” indicates that the entry “Bill” should be
added to the right of “Bob”. Thus, at T2, a leaf line with the
string “Bill” is requested from the memory controller. Since
the leaf lines of the DAG are immutable, a line containing the
revised content is requested from the memory system for each
line that differs in the new DAG. Here, a new PLID 310 is
created based on PLID 308, where the left pointer points to
existing leaf line “Bob”, and the right pointer points to the leaf
line containing “Bill”. When the new PLID/leaf lines are
added, anew DAG is generated accordingly. A new PLID 312
is generated as the parent of PLIDs 306 and 310. While new
PLIDs and new relationships are formed to construct a new
DAG, any portion of the old DAG that is unchanged, such as
PLID 306, is preserved and reused, thus allowing the new
DAG to be created efficiently and reducing computation over-
head significantly.

At T3, it is determined whether the pointer to the old
version of the data structure (i.e., root pointer 302) is the same
as the pointer to thread A’s current version of the data struc-
ture (i.e., local root pointer A). This corresponds to 502 of
process 500. In this example, the two values are the same,
indicating that the old data structure has not been modified by
another thread and thread A has run atomically, and 504 of
process 500 can be executed. Thus, the root pointer is set to
point to the new DAG with top level PLID 312 and the old
DAG is replaced. In other words, a CAS operation is com-
pleted. The PLIDs in the new directory (306, 312, and 310)
and their corresponding leaf lines are illustrating using heavy
lines in the figure.

FIGS. 5A-5B are data structure diagrams illustrating a
merge-update of changes to the same data structure from
multiple threads. Assume that at T2', which occurs after
thread A has begun to add “Bill” to the data structure (T1) but
before the update is committed (T3), another thread B
attempts to change the value of “Bob” to “Bob2”. Thread B
makes a copy of the original DAG data structure by creating
a local root pointer B that points to the same PLID as root
pointer 302. At this point, root pointer 302 is still pointing to
PLID 304. A new, modified DAG is created by thread B.
Specifically, a new PLID 320 based on PID 308 is created.
The left pointer of PLID 320 points to the left leaf line with the
modified value “Bob2” and the right pointer points to NULL.
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A new parent PLID 322 based on node 304 is also created,
pointing to original PLID 306 with its left pointer and new
PLID 320 with its right pointer.

As described above in connection with FIGS. 4A and 4B,
and 502-504 of process 500, at T3, a CAS operation takes
place and the root pointer points to the new data structure
created by thread A, with top level PID 312.

At time T4, thread B completes its updates and attempts to
merge the changes. For purposes of clarity, in this example,
from the perspective of thread B, the DAG with top level
PLID 304 is referred to as the old or original version since it
is what the root pointer originally pointed to, the DAG with
top PLID 312 is referred to as the current version since the
root pointer currently points to it, and the DAG with top PLID
322 is referred to as the new or modified version since it is
created by thread B for making modifications. At T4, accord-
ing to 502 of process 500, it is determined whether the old
DAG is the same as the current DAG. In this case, the DAGs
are different—root pointer 302 currently points to PLID 312
while the old pointer points to PLID 304. This difference
indicates that the old DAG has been modified by another
thread, namely thread A. Due to this conflict, a conventional
CAS operation of the old DAG and the new DAG by thread B
cannot be performed. Instead of rolling back thread B’s
operations, a merge-update operation takes place.

The merge-update operation is an iterative operation that
compares the values of the old DAG and the current DAG and
determines the differences between the current version and
the new version. Any logically consistent difference is
merged according to 510 and 504 of process 500; any logi-
cally inconsistent difference is handled as a merge failure
according to 512 of process 500.

In this example, the left pointer of old PLID 304 is com-
pared with the left pointer of the current PLID 312. Both
pointers point to PLID 306, as does the left pointer of the
corresponding new PLID 322. This indicates that PLID 306
has not been modified and no further comparison is needed.
The detection of equivalent high level PLIDs in the current
DAG and the new DAG can significantly reduce the amount
of the tree to be processed.

Similarly, the right pointer of old PLID 304 is compared
with the right pointer of the current PLID 312. The former
points to PLID 308 and the latter points to PLID 310. The
merge-update operation iterates and the left pointers of
PLIDs 308 and 310 are compared. Since they both point to the
same leaf line “Bob”, the value of the corresponding new
PLID 320’s left pointer, “Bob2”, is determined to be the new
left leaf line.

The right pointers of PLIDs 308 and 310 are also com-
pared. Since these pointers point to different leaf lines, and
right pointer of the corresponding new PLID 320 points to
NULL, the current value “Bill” is set as the value pointed to
by the right pointer of new PLID 320.

At time TS5, merge-update is completed according to 510-
504 of process 500. A new DAG is constructed, with a new
parent PLID 330 being requested for leaf lines “Bob2” and
“Bill”, and a higher level parent PLID 332 being requested for
PLIDs 306 and 330. The root pointer of the data structure
points to this new DAG, which includes merged changes from
threads A and B. The final DAG is shown in FIG. 5B. When
the threads finish their operations and exit, any PLIDs or leaf
lines no longer referenced by a valid pointer will eventually
be garbage collected.

In the above example, the modifications by thread’s A and
B are logically consistent. In this case, the consistency con-
straint is that at least one of a current version of a leaf line and
a new version of the leaf line is a NULL pointer. In other
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words, concurrent threads have not changed both the current
and the new copies of the same leaf node to different non-
NULL values. Such changes made by threads A and B con-
currently are deemed logically consistent since they result in
the same memory state as changes made by the individual
threads executing atomically. In other words, the resulting
memory is in a predictable state. In some embodiments, a
special value is used to distinguish a pointer that has been
cleared/modified to NULL from a pointer that points to
NULL.

Had the threads both tried to logically modify the same leaf
entry to different non-NULL values (for example, thread A
attempts to modify “Sue” to “Sue2” and thread B attempts to
modify “Sue” to “Sue3”) and both operations been allowed to
succeed, the atomicity of the application operation would be
violated. In particular, both thread A and thread B could
expect to change the entry based on it being “Sue” at the start
of their operations yet it then would have been “Sue2” logi-
cally at the time that thread B completed its update by merge-
update. In this case, the merge must fail and later thread rolls
back and retries its operations as described above in connec-
tion with 512 of process 500.

In some embodiments, logically consistent changes
involve changes made to values such as counters or indices.
For example, two threads may concurrently attempt to incre-
ment the same packet counter in a networking application.
The changes can be merged in a logically consistent manner
by taking the difference between the new value and the old
value, then adding the current value. Here, old, new, and
current values correspond to the original value of the counter,
the modified counter value by the thread, and the current
value of the counter that is possibly modified by another
thread, respectively. For example, a packet counter originally
has a value of 100. Threads A attempts to increment the
counter by 1 and thread B attempts to increment the same
counter by 2 concurrently. Thread A acts first, getting its
current version of the counter and incrementing the current
counter value to be 101. Thread B creates its new version of
the counter when the counter value is still 100 and then
increments the new counter value to 102. The merged counter
value is computed as follows: merged counter
value=modified counter value—original counter value+cur-
rent counter value In the example above, the merged counter
value=102-100+101=103, which is the same as if the threads
had executed atomically. Thus, the changes to the counter
value are deemed logically consistent. This type of merge-
update is referred to as incremental merge-update.

Another example of incremental merge-update is used for
a queue that has a head pointer and a tail pointer represented
by indexed pointers headPtr[i] and tailPtr[j], respectively,
where 1 and j are respectively indices of the head and tail
entries in the queue. An enqueuing operation increments the
tail index, allocates a tail entry, and then updates the queue
data. When multiple threads or processes concurrently per-
form enqueueing operations, if there is a conflict that needs to
be merged, the tail index is determined as a difference
between the new version of the index as modified by the
thread of interest and the old version of the index, plus the
current version of the index that has possibly been modified
by another thread as follows:

tail index=new version of tail index—old version of tail
index+current version of tail index

In some embodiments, the data structure includes an indi-
cator such as a marker or a flag to indicate that incremental
merge-update is allowed so that the merge-update operation
accounts for incremental merge-update in its computation.
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Similarly, a dequeuing operation that increments the head
index can be incrementally merged and updated by taking the
difference between the new version and the old version of the
index value, and adding the current version of the index.

Since there are a number of possible ways to determine 5
whether a difference is logically consistent, in some embodi-
ments, the determination is made by applying one or more
logical consistency constraints selected from a plurality of
available logical consistency constraints. The programmer or
compiler may determine the appropriate logical consistency
constraints based on the type of data structure used and allow
for different ways of handling the merge-update operation.

The following C++ like pseudo code illustrates an imple-
mentation of a merge-update function that handles different
types of data structures. In this example, each leaf line field is
associated with an indicator indicating whether it is storing a
pointer or a value. If a pointer is stored, merge-update fails if
the current version and the new version of a leaf line are
concurrently updated by multiple threads to different values.
If a value is stored and that incremental merge-update is
allowed for the value, the difference between the old version
of the value and the new version of the value is summed with
the current version of the value. Each non-leaf node has a
“left” field and a “right” field, pointing to the left and right
subtrees of the DAG starting at the non-leaf node. Each leaf
node has a “left” field and a “right” field containing, each
containing an application datum.

12

old=adjustHeight(old,mht);

cur=adjustHeight(cur,mht);

new=adjustHeight(new,mht);

The adjustHeight procedure adds a new root node that
points in its left field to the original root of the node (and null
in the right field), thereby increasing its height, repeatedly
until its height equals maxHt. It just returns the DAG passed
as an argument if the current height matches maxHt. Because
maxHt is the maximum height, no DAG is reduced in height.

In the above implementation, the MergeUpdate function is
invoked directly by the software program. For example, mul-
tiple partial result matrices from several different threads or
processes may be merged using the MergeUpdate function.
Alternatively, a difference data structure that includes
changes to the old version of the data structure can be explic-
itly generated. For example, a difference sparse array in a
HICAMP architecture would store just those entries that have
been modified. In some embodiments, a special value is used
to distinguish a pointer that has been cleared/modified to
NULL from a pointer that points to NULL. Returning to the
example shown above in connection with FIGS. 5A-5B, a
difference data structure may be constructed to indicate that
“Bob” has been changed to “Bob2” and the leaf node to the
right of “Bob” has changed from NULL to “Bill.” The differ-
ence is applied to the current data structure. If a difference
cannot be applied (e.g., “Sue” is changed to “Sue2” by one
thread and “Sue3” by another thread), the merge fails. The

node MergeUpdate (old, cur, new) {
if (cur == old) return new;
if(new==o0ld) return cur;
if (IsLeafNodeField (cur)) {
if (\LeafLineFieldIsPtr(cur)&& IncrementalUpdateAllowed) {

//leaf line is a value and incremental

//merge-update is allowed
return new = new — old + cur;

if (cur!= new) throw exception;
return new;

newLeft = (cur->left != new->left)?MergeUpdate (old->left, cur->left, new->left):

new->left;
newRight = (cur->right != new->right)?MergeUpdate (old->right, cur->right, new->
right):mew->right;
return new node (newLeft, newRight);
¥
45
A merge compare-and-swap (MCAS) function based on pseudo code of an example implementation of MergeUpdate
the merge-update function is implemented as follows: using a difference data structure is shown as follows:
bool MCAS (old, curAddr, new) { 50 MergeUpdateDiff(old, cur, dif) {
try { for (all diff entries in dif) {
cur = *curAddr; newCur = apply diff entry to corresponding cur entry
while (!CAS(old, cur, new)) { /ICAS failed or throw exception if diff entry cannot be applied to cur entry
new = MergeUpdate (old, cur, new); //attempt to merge 1
old=cur; return newCur;
¥ 55 }
} catch (...) {
return false;
// merge failed .
} A pseudo code example of a compare-and-swap function
return true; based on MergeUpdateDiffs function (MDCAS) is illustrated
! 60 as follows:

The modification to a DAG may increase or decrease its
height. For example, the fifth entry ofthe array corresponding
to this DAG could be written to non-null, causing the height of
the DAG to increase. Thus, the merge call should be pro- 65
ceeded by the following C++-like pseudo code:
maxHt=maxHeight(oldHeight,curHeight,newHeight);

bool MDCAS (old, curAddr, dif) {
try {
do {
cur = *curAddr;
new = MergeUpdateDiff (old, cur, dif);
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-continued

} while (ICAS (old, cur, new));
} catch (...) {

return false; // merge failed

)

return true;

}

Unlike the conventional CAS, which fails whenever there
is any conflict, MCAS and MDCAS both attempt to merge the
conflict and only fails when the conflict is logically inconsis-
tent and cannot be merged.

In some embodiments, a data structure may include one or
more portions that are suitable for merge-update and one or
more portions that are not. For example, a database table may
include several fields storing the name of user, a credit card
number for the user, and number of times the credit card has
been used. Multiple threads or processes are permitted to
perform merge-update on user names in a manner similar to
what was illustrated in FIGS. 4A-5B and perform incremental
merge-update on the number of times the credit card has been
used. No incremental merge-update is permitted on the credit
card numbers if they are treated as values, although it may be
permissible to treat the credit card numbers as strings and
allow merge-update so that modifications can be processed
concurrently without retries. The table can be represented as
a collection of three columns or arrays, one per field, each
indexed by a respective table key. In some embodiments, each
column or array includes a first indicator indicating whether
merge-update is allowable, and a second indicator indicating
whether incremental merge-update is allowable. Alterna-
tively, a type indicator indicating whether the leaf node is a
pointer or a value and an update indicator indicating whether
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update is allowable. Concurrent access to the segment may be
merged using incremental merge-update if it is allowable;
else, using merge-update if it is allowable, or not merged at all
if neither merge-update nor incremental merge-update is
allowed.

In some embodiments, a segment includes specific types of
fields to which special merge-update policies can be applied.
For example, a segment may include a field that is a list.
Accordingly, a merge-update policy for this field merges the
current list and the new list and eliminates any duplicate
entries. As another example, a segment may include a field
that is a timestamp. The corresponding merge-update policy
(also referred to as an override merge-update policy) uses the
later time value of the new version or the current version when
both versions have changed.

In some embodiments, segments are nested and merge-
update operations are carried out recursively. FIG. 6 is a
diagram illustrating an example of a nested segment data
structure. In this example, leafnodes 602 and 604 of segment
A point to segments B and C, respectively. The root pointer
points to segment A, which maps keys to other segments such
as B and C. Thus, segment A is referred to as the mapping
segment. Since segments B and C contain actual data in its
leaf nodes, they are referred to as data segments. Additional
layers of nesting are permitted and different number of map-
ping and data segments can be used in other data structures.
The mapping segment and some of its data segments are
associated with indicators indicating that the segments are
suitable for merge-update.

In some embodiments, the DAG leaf nodes are treated as
entries in an array for purposes of merging. An example
pseudocode for merging pointer leafnodes in anested DAG is
as follows:

node NestedMergeUpdate (old, cur, new) {
for (i=0; i<maxEntries; i++) {

if (cur[i]==old[i]) continue; //eur has not changed
if (new[i]==old[i]) new[i]=cur[i]; //mew has not changed
if (cur[i]==new[i]) continue; //both changed to the same value

newl[i]=RecMergeUpdate(old[i], cur

[i], new[i]);

node RecMergeUpdate (old, cur, new) {
if (cur == old) return new;
if(new==0ld) return cur;
if (IsLeafNodeField (cur)) {
if (\LeafLineFieldIsPtr(cur)&& IncrementalUpdateAllowed) {

//leaf line is a value and incremental
//merge-update is allowed

return new = new — old + cur;

if (cur!= new) {

if (cur is recursive-update) {
new = RecMergeUpdate (old, cur, new);

else exception;

return new;

newLeft = (cur->left != new->left)?RecMergeUpdate (old->left, cur->left, new->left):

new->left;

newRight = (cur->right != new-> right)?RecMergeUpdate (old-> right, cur-> right, new-> right):

new-> right;

return new node (newLeft, newRight);

}

merge-update or incremental merge-update is allowable can
be used in some embodiments.

In some embodiments, a segment, represented as a DAG, is
associated with a field that indicates whether merge-update is
allowable and more specifically whether incremental merge-

65

FIG. 7 is a flowchart illustrating an embodiment of a pro-
cess for handling merge update of a nested DAG data struc-
ture. Process 700 may be applicable to a nested data structure
similar to 600 of FIG. 6. The process initiates when a thread
or process is ready to commit its modifications after perform-
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ing updates to the nested data structure. References to an old
version, a current version, and a new version of the mapping
segment are created during the update process in the manner
similar to what was discussed above. Also during the update
process, when a leaf node (i.e., data segment) is modified, a
corresponding old version, a current version, and a new ver-
sion are similarly referenced.

In this example, the leaf node segments are pointers, and
the merge update process treats the leaf node segments of the
data structure as entries in an array. The size of the array is
denoted as maxEntries. A loop commences at 706, where the
index i of the entry being processed is initialized or updated.
At 708, it is determined whether the current version of leaf
node segment i is the same as the old version. In some
embodiments, this determination is made by comparing the
physical addresses of the current and old versions that corre-
spond to the leaf node segment. Because the segments in the
DAG structure are immutable, if both the current and the old
versions are the same, then the current version of the leaf node
segment has not changed, the process continues and control is
transferred to 706, where the index is incremented and the
loop repeats. Else, control is transterred to 710, where the new
version and the old version of leaf node segment i are com-
pared. If they are the same, then the new version has not
changed. Accordingly, control is transferred to 724, where the
new leaf node is stored in the leaf node of the modified
mapping segment to replace the old address of the data seg-
ment associated with this entry. Else, control is transferred to
714, where the current version is compared with the new
version of leaf node segment i. If the current version and the
new version are the same, then both the current version and
the new version changed to the same value, thus control is
transferred to 706 and the loop continues.

Unlike the merge-update operation discussed previously in
connection with an un-nested data structure such as an un-
nested DAG where a leaf node pointer that is changed in both
the current version and the modified version is deemed to be
logically inconsistent and causes the merge-update operation
to abort, in the nested structure, when the current version and
the new version of the leaf node mapping segment are both
changed, a recursive merge-update is attempted on the leaf
node segment at 716. The recursive merge update function
follows the RecMergeUpdate pseudocode shown above, and
is very similar to process 300 (the merge-update process)
except that when the current version is not the same as the new
version, and the current version is a pointer to a nested struc-
ture that allows recursive update, it is the RecMergeUpdate
function that is recursively invoked.

If the leaf node segment allows merge-update and the
merge-updateis successful, at 722, anew physical address for
the associated leaf node segment is acquired from the
memory controller. At 724, the new leaf node is stored in the
leaf node of the modified mapping segment to replace the old
address of the data segment associated with this entry. The
loop is then repeated. If, however, the data segment does not
allow recursive merge-update or if recursive merge-update is
unsuccessful, the recursive merge-update of the mapping seg-
ment fails and the failure is handled at 720.

When i reaches maxEntries, the loop finishes and the new
version is returned at 704.

If the mapping segment’s recursive merge-update suc-
ceeds, the current version of the mapping segment is used to
replace the old version in retrying the CAS operation to
commit the map segment. The commit succeeds if there is no
intervening change to the current version. Otherwise, the
merge-update is retried until it fails or the MCAS succeeds.
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Process 700 may be performed recursively for segments
with deeper nesting, by merging segments that are referenced
directly or indirectly by an upper layer segment that is being
merge-updated. For example, in some embodiments, object
segments are referenced indirectly by virtual segment 1D
(VSID) through a virtual segment map that maps a VSID to
the physical address of the segment data. The virtual segment
acts as a mapping segment for all other segments. An atomic
update across multiple segments referenced by the virtual
segment map can be accomplished by: saving a copy of the
current virtual segment map as the old version and a copy as
the new version; performing updates to the data segments as
separate copies and only modifying its new version of the
virtual segment map to reference these new, separate copies;
and atomically committing the updated virtual segment’s
mapping segment using MCAS, relying on merge-update to
resolve conflicts at the mapping level as well as the data
segment level if possible.

Process 700 allows concurrent update to multiple objects
that is atomic. The atomic update involving multiple threads
or processes is only aborted when the threads or processes
have performed logically inconsistent updates at either the
virtual segment map level or the data segment level. If the
revised version of the virtual segment map is not committed
but is aborted or released, the entries dereferencing the new
data segments are dereferenced, and the revised data seg-
ments are also dereferenced and freed. Consequently,
changes and memory allocations performed as part of the
aborted process are undone.

Although hardware implementation of the merge-update
technique is described extensively above, the technique can
also be implemented in software, such as cycle-accurate and
synchronous software simulation of hardware. For example,
during a hardware simulation cycle, a process is programmed
to read data segment state using the old version of the virtual
segment map. The process only reads data that was set in the
previous cycle. The process writes to data segments refer-
enced only in the new version of the virtual segment map. At
the end of the simulated hardware cycle, the software com-
mits the changes to the new version of the virtual segment
map, and maps the new state available for the next cycle.
Thus, the process is programmed to only read state from a
previous cycle even if it has updated the memory location
within the current simulated cycle, matching the behavior of
hardware flip-flops registers.

Atomic merge-update operation in concurrent computer
systems has been disclosed. By allowing logically consistent
modifications to structured memory to be merged, CAS
operations can be efficiently performed in many situations
without requiring operations to be rolled back.

Although the foregoing embodiments have been described
in some detail for purposes of clarity of understanding, the
invention is not limited to the details provided. There are
many alternative ways of implementing the invention. The
disclosed embodiments are illustrative and not restrictive.

What is claimed is:

1. A method for atomically updating an in-memory data
structure that is directly accessible by a processor, compris-
ing:

comparing old information associated with an old version

of the in-memory data structure with current informa-
tion associated with a current version of the in-memory
data structure;

in the event that the old information and the current infor-

mation are the same, replacing the old version with a
new version of the in-memory data structure;
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in the event that the old information and the current infor-
mation are not the same, determining a difference
between the current version of the in-memory data struc-
ture relative to the old version of the in-memory data
structure and the new version of the in-memory data
structure relative to the old version of the in-memory
data structure, and determining whether the difference is
logically consistent, wherein a logically consistent dif-
ference pertains to concurrent modifications to the cur-
rent version of the in-memory data structure and the new
version of the in-memory data structure that are resolv-
able to arrive at a predictable memory state; and

in the event that the difference is logically consistent,

merging a change in the current version with the new
version.

2. The method of claim 1, further comprising, in the event
that the difference is logically consistent, replacing the cur-
rent version with the new version that includes the merged
change.

3. The method of claim 1, wherein the old version of the
in-memory data structure and the new version of the in-
memory data structure are represented as directed acyclic
graphs (DAGs).

4. The method of claim 3, wherein determining the difter-
ence includes comparing portions of the DAGs.

5. The method of claim 3, wherein determining the difter-
ence includes comparing portions of the DAGs and determin-
ing that at least some portions of the DAGs are identical.

6. The method of claim 1, further comprising determining
all differences between the current version of the in-memory
data structure and the new version of the in-memory data
structure and whether the differences are logically consistent.

7. The method of claim 1, further comprising, in the event
that the difference is not logically consistent, handling merge
failure.

8. The method of claim 1, wherein the in-memory data
structure is stored in structured memory that is immutable.

9. The method of claim 1, wherein the in-memory data
structure is stored in structured memory that is deduplicated.

10. The method of claim 1, wherein whether the difference
is logically consistent is determined based at least in parton a
logical consistency constraint selected from a plurality of
potential logical consistency constraints.

11. The method of claim 1, wherein the difference is logi-
cally consistent if at least a current version of a leafnode in the
in-memory data structure or a new version of the leaf node is
the same as an old version of the leaf node.

12. The method of claim 1, wherein the difference is logi-
cally consistent if a leaf node in the in-memory data structure
corresponds to a value that can be incremented or decre-
mented.

13. The method of claim 12, wherein merging the change in
the current version with the new version includes evaluating a
sum of a current version of the leaf node and a difference
between a new version of the leaf node and an old version of
the leaf node.

14. The method of claim 1, wherein determining the dif-
ference between the current version of the in-memory data
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structure includes receiving a difference data structure that
includes entries that indicate changes between the current
version of the in-memory data structure and the new version
of'the in-memory data structure.

15. The method of claim 1, wherein the new version of the
in-memory data structure includes a difference data structure
that includes changes to the old version of the in-memory data
structure.

16. The method of claim 1, wherein:

the in-memory data structure includes a value; and

merging the change in the current version with the new

version includes performing an incremental merge-up-
date of the value.

17. The method of claim 1, wherein:

the in-memory data structure includes a value; and

merging the change in the current version with the new

version includes performing an override merge-update
of the value according to an override merge-update
policy.

18. The method of claim 1, wherein:

the in-memory data structure includes a nested data struc-

ture; and

merging the change in the current version with the new

version includes performing merging recursively.

19. The method of claim 1, wherein merging the change in
the current version with the new version is performed in
hardware.

20. A system for atomically updating an in-memory data
structure that is directly accessible by a processor, compris-
ing:

the processor configured to:

compare old information associated with an old version of

the in-memory data structure with current information
associated with a current version of the in-memory data
structure;

in the event that the old information and the current infor-

mation are the same, replace the old version with a new
version of the in-memory data structure;

in the event that the old information and the current infor-

mation are not the same, determine a difference between
the current version of the in-memory data structure rela-
tive to the old version of the in-memory data structure
and the new version of the in-memory data structure
relative to the old version of the in-memory data struc-
ture, and determine whether the difference is logically
consistent, wherein a logically consistent difference per-
tains to concurrent modifications to the current version
of the in-memory data structure and the new version of
the in-memory data structure that are resolvable to arrive
at a predictable memory state; and

in the event that the difference is logically consistent,

merge a change in the current version with the new
version; and

a memory coupled to the processor and configured to pro-

vide the processor with instructions.
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